Gender-Hierarchy Particle Swarm Optimizer Based on Punishment

نویسندگان

  • Jiaquan Gao
  • Hao Li
  • Luoke Hu
چکیده

The paper presents a novel particle swarm optimizer (PSO), called gender-hierarchy particle swarm optimizer based on punishment (GH-PSO). In the proposed algorithm, the social part and recognition part of PSO both are modified in order to accelerate the convergence and improve the accuracy of the optimal solution. Especially, a novel recognition approach, called general recognition, is presented to furthermore improve the performance of PSO. Experimental results show that the proposed algorithm shows better behaviors as compared to the standard PSO, tribes-based PSO and GH-PSO with tribes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Particle Swarm Optimizer Based on a Novel Class of Fast and Efficient Learning Factors Strategies

The particle swarm optimizer (PSO) is a population-based metaheuristic optimization method that can be applied to a wide range of problems but it has the drawbacks like it easily falls into local optima and suffers from slow convergence in the later stages. In order to solve these problems, improved PSO (IPSO) variants, have been proposed. To bring about a balance between the exploration and ex...

متن کامل

Damage detection of skeletal structures using particle swarm optimizer with passive congregation (PSOPC) algorithm via incomplete modal data

This paper uses a PSOPC model based non-destructive damage identification procedure using frequency and modal data. The objective function formulation for the minimization problem is based on the frequency changes. The method is demonstrated by using a cantilever beam, four-bay plane truss and two-bay two-story plane frame with different scenarios. In this study, the modal data are provided nume...

متن کامل

Minimal K-Covering Set Algorithm based on Particle Swarm Optimizer

For random high density distribution in wireless sensor networks in this article have serious redundancy problems. In order to maximize the cost savings network resources for wireless sensor networks, extend the life network, this paper proposed a algorithm for the minimal k-covering set based on particle swarm optimizer. Firstly, the network monitoring area is divided into a number of grid poi...

متن کامل

Particle Swarm Optimizer with Time-Varying Parameters based on a Novel Operator

This paper proposes a time-varying particle swarm optimizer based on our earlier work which introduces a novel operator (leap operator). Two new parameters are recommended in leap operator to prevent premature convergence. With these two parameters, a new modification named LPSO is constructed. Since the values of the 2 parameters are not easy to determine, in this paper, they are modified as t...

متن کامل

A Hybrid Particle Swarm and Ant Colony Optimization for Design of Truss Structures

This paper presents a particle swarm ant colony optimization for design of truss structures. The algorithm is based on the particle swarm optimizer with passive congregation and ant colony optimization. The particle swarm ant colony optimization applies the particle swarm optimizer with passive congregation for global optimization and ant colony approach is employed to update positions of parti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010